6.6: Taylor's Theorem (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    22676
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    6.6.1 Derivatives of Higher Order

    Definition

    Suppose \(f\) is differentiable on an open interval \(I\) and \(f^{\prime}\) is differentiable at \(a \in I .\) We call the derivative of \(f^{\prime}\) at \(a\) the second derivative of \(f\) at \(a,\) which we denote \(f^{\prime \prime}(a)\).

    By continued differentiation, we may define the higher order derivatives \(f^{\prime \prime \prime},\) \(f^{\prime \prime \prime \prime},\) and so on. In general, for any integer \(n, n \geq 0,\) we let \(f^{(n)}\) denote the \(n\)th derivative of \(f,\) where \(f^{(0)}\) denotes \(f\).

    Exercise \(\PageIndex{1}\)

    Suppose \(D \subset \mathbb{R}, a\) is an interior point of \(D, f: D \rightarrow \mathbb{R},\) and \(f^{\prime \prime}(a)\) exists. Show that

    \[\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}=f^{\prime \prime}(a).\]

    Find an example to illustrate that this limit may exist even if \(f^{\prime \prime}(a)\) does not exist.

    For any open interval \((a, b),\) where \(a\) and \(b\) are extended real numbers, we let \(C^{(n)}(a, b),\) where \(n \in \mathbb{Z}^{+},\) denote the set of all functions \(f\) with the property that each of \(f, f^{(1)}, f^{(2)}, \ldots, f^{(n)}\) is defined and continuous on \((a, b) .\)

    6.6.2 Taylor's Theorem

    Theorem \(\PageIndex{1}\)

    (Taylor's Theorem).

    Suppose \(f \in C^{(n)}(a, b)\) and \(f^{(n)}\) is differentiable on \((a, b) .\) Let \(\alpha, \beta \in(a, b)\) with \(\alpha \neq \beta,\) and let

    \[\begin{aligned} P(x)=f(&\alpha)+f^{\prime}(\alpha)(x-\alpha)+\frac{f^{\prime \prime}(\alpha)}{2}(x-\alpha)^{2}+\cdots \\ &+\frac{f^{(n)}(\alpha)}{n !}(x-\alpha)^{n} \\=& \sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k !}(x-\alpha)^{k}. \end{aligned}\]

    Then there exists a point \(\gamma\) between \(\alpha\) and \(\beta\) such that

    \[f(\beta)=P(\beta)+\frac{f^{(n+1)}(\gamma)}{(n+1) !}(\beta-\alpha)^{n+1}.\]

    Proof

    First note that \(P^{(k)}(\alpha)=f^{(k)}(\alpha)\) for \(k=0,1, \ldots, n .\) Let

    \[M=\frac{f(\beta)-P(\beta)}{(\beta-\alpha)^{n+1}}.\]

    Then

    \[f(\beta)=P(\beta)+M(\beta-\alpha)^{n+1}.\]

    We need to show that

    \[M=\frac{f^{(n+1)}(\gamma)}{(n+1) !}\]

    for some \(\gamma\) between \(\alpha\) and \(\beta .\) Let

    \[g(x)=f(x)-P(x)-M(x-\alpha)^{n+1}.\]

    Then, for \(k=0,1, \ldots, n\),

    \[g^{(k)}(\alpha)=f^{(k)}(\alpha)-P^{(k)}(\alpha)=0.\]

    Now \(g(\beta)=0,\) so, by Rolle's theorem, there exists \(\gamma_{1}\) between \(\alpha\) and \(\beta\) such that \(g^{\prime}\left(\gamma_{1}\right)=0 .\) Using Rolle's theorem again, we see that there exists \(\gamma_{2}\) between \(\alpha\) and \(\gamma_{1}\) such that \(g^{\prime \prime}\left(\gamma_{2}\right)=0 .\) Continuing for \(n+1\) steps, we find \(\gamma_{n+1}\) between \(\left.\alpha \text { and } \gamma_{n} \text { (and hence between } \alpha \text { and } \beta\right)\) such that \(g^{(n+1)}\left(\gamma_{n+1}\right)=0 .\) Hence

    \[0=g^{(n+1)}\left(\gamma_{n+1}\right)=f^{(n+1)}\left(\gamma_{n+1}\right)-(n+1) ! M.\]

    Letting \(\gamma=\gamma_{n+1},\) we have

    \[M=\frac{f^{(n+1)}(\gamma)}{(n+1) !},\]

    as required. \(\quad\) Q.E.D.

    We call the polynomial \(P\) in the statement of Taylor's theorem the Taylor polynomial of order \(n\) for \(f\) at \(\alpha .\)

    Example \(\PageIndex{1}\)

    Let \(f(x)=\sqrt{x} .\) Then the 4th order Taylor polynomial for \(f\) at 1 is

    \[P(x)=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}-\frac{5}{128}(x-1)^{4}.\]

    By Taylor's theorem, for any \(x>0\) there exists \(\gamma\) between 1 and \(x\) such that

    \[\sqrt{x}=P(x)+\frac{105}{(32)(5 !) \gamma^{\frac{9}{2}}}(x-1)^{5}=P(x)+\frac{7}{256 \gamma^{\frac{9}{2}}}(x-1)^{5}.\]

    For example,

    \[\sqrt{1.2}=P(1.2)+\frac{7}{256 \gamma^{\frac{9}{2}}}(1.2-1)^{5}=P(1.2)+\frac{7}{256 \gamma^{\frac{9}{2}}}(0.2)^{5}=P(1.2)+\frac{7}{800000 \gamma^{\frac{9}{2}}},\]

    for some \(\gamma\) with \(1<\gamma<1.2 .\) Hence \(P(1.2)\) underestimates \(\sqrt{1.2}\) by a value which is no larger than \(\frac{7}{80000} .\) Note that

    \[P(1.2)=\frac{17527}{16000}=1.0954375\]

    and

    \[\frac{7}{800000}=0.00000875.\]

    So \(\sqrt{1.2}\) lies between 1.0954375 and 1.09544625.

    Exercise \(\PageIndex{2}\)

    Use the 5th order Taylor polynomial for \(f(x)=\sqrt{x}\) at 1 to estimate \(\sqrt{1.2}\). Is this an underestimate or an overestimate? Find an upper bound for the largest amount by which the estimate and \(\sqrt{1.2}\) differ.

    Exercise \(\PageIndex{3}\)

    Find the 3rd order Taylor polynomial for \(f(x)=\sqrt[3]{1+x}\) at 0 and use it to estimate \(\sqrt[3]{1.1}\). Is this an underestimate or an overestimate? Find an upper bound for the largest amount by which the estimate and \(\sqrt[3]{1.1}\) differ.

    Exercise \(\PageIndex{4}\)

    Suppose \(f \in C^{(2)}(a, b) .\) Use Taylor's theorem to show that

    \[\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h^{2}}=f^{\prime \prime}(c)\]

    for any \(c \in(a, b)\).

    Exercise \(\PageIndex{5}\)

    Suppose \(f \in C^{(1)}(a, b), c \in(a, b), f^{\prime}(c)=0,\) and \(f^{\prime \prime}\) exists on \((a, b)\) and is continuous at \(c .\) Show that \(f\) has a local maximum at \(c\) if \(f^{\prime \prime}(c)<0\) and a local minimum at \(c\) if \(f^{\prime \prime}(c)>0 .\)

    6.6: Taylor's Theorem (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Dr. Pierre Goyette

    Last Updated:

    Views: 6630

    Rating: 5 / 5 (70 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Dr. Pierre Goyette

    Birthday: 1998-01-29

    Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

    Phone: +5819954278378

    Job: Construction Director

    Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

    Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.